Combining Object-Based Machine Learning with Long-Term Time-Series Analysis for Informal Settlement Identification

نویسندگان

چکیده

Informal settlement mapping is essential for planning, as well resource and utility management. Developing efficient ways of determining the properties informal settlements (when, where, who) critical upgrading services planning. Remote sensing data are increasingly used to understand built environments. In this study, we combine two sources data, very-high-resolution imagery time-series Landsat identify describe settlements. The indicators characterising were grouped into four different spatial temporal levels: environment, settlement, object time. These then in an object-based machine learning (ML) workflow proposed method had a 95% overall accuracy at Among levels examined, contribution level was most significant ML model, followed by object-level indicators. Whilst did not contribute greatly classification settlements, it provided way understanding when formed. adaptation would allow combination wide-ranging diverse group comprehensive framework.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms for time series in financial markets

This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...

متن کامل

Dynamic Harmonic Analysis of Long Term over Voltages Based on Time Varying Fourier series in Extended Harmonic Domain

Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs an Extended Harmonic Domain (EHD) based framework for dynamic analysis of long term analysis over voltages during the tra...

متن کامل

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Forecasting Time Series Combining Machine Learning and Box-Jenkins Time Series

In statistical field Box-Jenkins Time Series is a linear method widely used to forecasting. The linearity makes the method inadequate to forecast real time series, which could present irregular behavior. On the other hand, in artificial intelligent field FeedForward Artificial Neural Networks and Continuous Machine Learning Systems are robust handlers of data in the sense that they are able to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs14051226